Part Number Hot Search : 
TFS466B 1N6379 XC4VFX12 AHK1421 5KE12CA LT1001AM AZV99XP LE27ABZ
Product Description
Full Text Search
 

To Download NSF2250WT1-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2002 july, 2002 rev. 2 1 publication order number: nsf2250wt1/d nsf2250wt1 npn silicon oscillator and mixer transistor the nsf2250wt1 npn silicon epitaxial bipolar transistor is intended for use in general purpose uhf oscillator and mixer applications. it is suitable for automovtive keyless entry and tv tuner designs. the device features stable oscillation and small frequency drift during changes in the supply voltage and over the ambient temperature range. features ? high gain bandwidth product: f t = 2000 mhz minimum ? tightly controlled h fe range: h fe = 120 to 250 ? low feedback capacitance: c re = 0.45 pf typical maximum ratings parameters symbol units ratings collector to base voltage v cbo v 30 collector to emitter voltage v ceo v 15 emitter to base voltage ve bo v 3.0 collector current i c ma 50 electrostatic discharge esd hbm class 1c mm class a thermal characteristics characteristic symbol max unit total device dissipation t a = 25 c derate above 25 c p d 202 (note 1) 310 (note 2) 1.6 (note 1) 2.5 (note 2) mw mw/ c thermal resistance junction-to-ambient r q ja 618 (note 1) 403 (note 2) c/w thermal resistance junction-to-lead r q jl 280 (note 1) 332 (note 2) c/w junction and storage temperature range t j , t stg 55 to +150 c 1. fr4 @ minimum pad 2. fr4 @ 1.0 x 1.0 inch pad device package shipping ordering information nsf2250wt1 sot323 http://onsemi.com sot323/sc70 case 419 style 3 3000/tape & reel marking diagram 1 2 3 collector 3 1 base 2 emitter 3m w 3m = specific device code w = date code
nsf2250wt1 http://onsemi.com 2 electrical characteristics (t a = 25 c) characteristic symbol min typ max unit collector cutoff current, v cb = 12 v, i e = 0 i cbo 0.1 m a dc current gain, v ce = 10 v, i c = 5.0 ma h fe 120 250 collector saturation voltage, i c = 10 ma, i b = 1.0 ma v ce(sat) 0.5 v gain bandwidth product, v ce = 3 v, i e = 5.0 ma f t 2.0 2.3 ghz output capacitance, v cb = 3 v, i e = 0 ma, f = 1.0 mhz c ob 0.7 1.2 pf collector to base time constant, v ce = 3 v, i e = 5.0 ma, f = 31.9 mhz c c  r b'b 3.5 8.0 ps feedback capacitance, v cb = 10 v, i e = 0 ma, f = 1.0 mhz c re 0.45 pf figure 1. derating curve 350 200 150 100 50 0 50 0 50 100 150 t a , ambient temperature ( c) r q ja = 403 c/w 250 p d , power dissipation (mw) 300
nsf2250wt1 http://onsemi.com 3 figure 2. dc current gain versus collector current h fe , dc current gain 250 200 150 100 50 100 10 1 0.1 figure 3. dc current gain versus collector current i c , collector current 100 10 1 0.1 250 200 150 100 50 0 0 300 350 i c , collector current (ma) v ce = 12 v 3 v 5 v h fe , dc current gain v ce = 5 v 25 c 55 c t a = 125 c figure 4. gain bandwidth product versus collector current i c , collector current (ma) 10,000 1000 100 100 10 1 0.1 figure 5. device capacitance versus collector base voltage v cb , collector base voltage (volts) 100 10 1 1 0.1 10 ft, gain bandwidth product (mhz) v ce = 12 v 5 v c re , feedback capacitance (pf) figure 6. output capacitance v r , reverse bias voltage (volts) 1.6 0.6 0.4 0.2 35 10 5 0 0 c ob , capacitance (pf) f = 1 mhz t a = 25 c 15 20 25 30 1.2 1 0.8 1.4 f = 1 mhz t a = 25 c
nsf2250wt1 http://onsemi.com 4 typical common emitter scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 2.5 v, i c = 2.5 ma 50 0.926 14.124 6.803 162.639 0.018 82.792 0.973 7.062 100 0.855 26.794 6.224 148.649 0.034 73.296 0.921 12.818 200 0.667 47.287 5.033 126.317 0.058 62.292 0.807 19.210 300 0.513 60.931 4.072 110.981 0.074 58.641 0.736 21.979 400 0.411 70.342 3.326 100.524 0.090 57.333 0.694 23.695 500 0.342 77.461 2.831 92.771 0.104 56.067 0.670 25.311 600 0.297 84.335 2.445 86.222 0.117 55.166 0.651 27.095 700 0.261 90.986 2.154 80.493 0.131 53.800 0.637 29.095 800 0.236 97.798 1.935 75.382 0.144 52.087 0.627 31.026 900 0.218 104.905 1.755 70.672 0.155 50.745 0.617 33.167 1000 0.205 112.449 1.617 66.258 0.168 49.386 0.608 35.352 1500 0.190 147.224 1.200 48.079 0.219 42.418 0.575 46.016 2000 0.215 171.677 1.011 33.299 0.258 35.910 0.544 58.267 2500 0.230 172.291 0.889 20.271 0.294 31.024 0.510 68.713 3000 0.236 155.125 0.866 10.984 0.340 28.868 0.450 81.517 typical common emitter scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 3 v, i c = 5 ma 50 0.858 20.126 12.065 156.269 0.017 78.802 0.945 10.278 100 0.733 36.552 10.452 139.116 0.029 69.100 0.850 16.656 200 0.493 58.358 7.472 115.678 0.047 62.893 0.712 20.497 300 0.362 69.976 5.544 103.053 0.062 62.188 0.653 21.545 400 0.288 78.272 4.337 94.866 0.075 61.876 0.621 22.551 500 0.242 85.666 3.582 88.592 0.090 61.259 0.603 23.975 600 0.212 93.237 3.048 83.504 0.103 59.861 0.590 25.526 700 0.190 101.308 2.656 78.785 0.116 58.802 0.580 27.405 800 0.177 109.656 2.375 74.561 0.128 57.017 0.573 29.334 900 0.167 118.336 2.145 70.348 0.141 55.629 0.563 31.402 1000 0.163 127.188 1.968 66.700 0.153 53.851 0.555 33.301 1500 0.176 164.287 1.435 50.083 0.203 47.574 0.528 43.164 2000 0.210 174.155 1.187 35.998 0.246 41.767 0.501 54.213 2500 0.226 159.754 1.034 23.227 0.288 36.614 0.469 63.689 3000 0.239 144.224 0.995 14.088 0.340 34.458 0.413 74.387
nsf2250wt1 http://onsemi.com 5 typical common emitter scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 3 v, i c = 10 ma 50 0.643 35.313 15.384 140.063 0.015 69.823 0.864 14.048 100 0.459 53.013 11.650 121.580 0.024 63.636 0.738 17.013 200 0.289 70.035 7.214 104.714 0.040 65.531 0.647 17.265 300 0.225 80.644 5.260 96.934 0.053 66.205 0.618 18.444 400 0.192 91.607 4.122 91.266 0.068 66.344 0.598 20.216 500 0.172 102.488 3.419 86.447 0.082 64.574 0.584 22.273 600 0.161 113.748 2.929 82.212 0.096 63.206 0.572 24.418 700 0.156 125.151 2.575 78.231 0.107 61.822 0.561 26.828 800 0.155 135.549 2.313 74.282 0.119 60.606 0.553 28.821 900 0.156 145.469 2.099 70.461 0.131 59.154 0.543 31.132 1000 0.163 153.718 1.925 67.004 0.141 57.409 0.536 33.247 1500 0.201 175.526 1.415 50.535 0.193 52.024 0.505 43.365 2000 0.237 159.398 1.173 36.726 0.240 46.396 0.477 54.652 2500 0.247 147.097 1.021 24.113 0.289 41.529 0.444 64.094 3000 0.259 133.925 0.982 15.023 0.346 38.491 0.382 75.243 typical common emitter scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 10 v, i c = 5 ma 50 0.877 17.278 11.972 157.707 0.012 81.580 0.972 7.268 100 0.765 31.274 10.386 140.944 0.022 72.099 0.900 12.126 200 0.539 49.213 7.575 118.277 0.037 66.849 0.803 14.944 300 0.406 57.758 5.678 105.478 0.049 66.104 0.757 16.182 400 0.334 63.347 4.464 97.467 0.062 65.473 0.729 17.508 500 0.286 68.461 3.698 91.347 0.073 64.460 0.717 19.007 600 0.252 73.828 3.159 86.264 0.085 63.014 0.706 20.874 700 0.227 79.612 2.766 81.745 0.095 62.100 0.697 22.551 800 0.208 86.135 2.474 77.803 0.106 60.785 0.690 24.442 900 0.190 93.121 2.237 73.571 0.116 59.532 0.682 26.405 1000 0.179 100.507 2.047 70.150 0.125 57.905 0.674 28.385 1500 0.162 139.494 1.495 53.949 0.169 52.604 0.652 37.411 2000 0.185 167.453 1.242 40.156 0.207 47.697 0.631 47.834 2500 0.200 175.534 1.082 27.306 0.247 44.045 0.609 55.962 3000 0.208 159.130 1.050 18.234 0.296 42.716 0.557 65.696
nsf2250wt1 http://onsemi.com 6 v ce = 2.5 v, i c = 2.5 ma figure 7. input reflection coefficient figure 8. reverse transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 3 ghz 0.05 ghz 0.2 0.3 0.4 0.5 0.05 ghz 3 ghz s11 s12 figure 9. output reflection coefficient figure 10. forward transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 3 ghz 0.05 ghz 2 0.05 ghz 3 ghz s22 s21 6 4 8 10
nsf2250wt1 http://onsemi.com 7 v ce = 3.0 v, i c = 10 ma figure 11. input reflection coefficient figure 12. reverse transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 3 ghz 0.05 ghz 0.2 0.3 0.4 0.5 0.05 ghz 3 ghz s11 s12 figure 13. output reflection coefficient figure 14. forward transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 3 ghz 0.05 ghz 4 0.05 ghz 3 ghz s22 s21 12 8 20 16
nsf2250wt1 http://onsemi.com 8 typical common base scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 2.5 v, i c = 2.5 ma 50 0.627 176.455 1.6218 3.3808 0.003 81.692 1.006 1.7455 100 0.626 172.821 1.6153 6.8404 0.008 87.954 1.002 3.5734 200 0.622 165.583 1.6042 13.205 0.014 92.620 1.005 6.7806 400 0.608 151.867 1.5630 26.289 0.031 96.834 1.006 13.779 600 0.589 138.455 1.5099 39.579 0.052 96.285 1.016 21.141 800 0.566 126.103 1.4461 52.382 0.076 94.675 1.022 28.553 1000 0.541 114.811 1.3613 65.315 0.102 90.577 1.026 36.519 1500 0.476 89.445 1.1404 98.892 0.170 78.774 1.014 57.448 2000 0.397 68.206 0.8928 133.58 0.233 68.003 0.922 77.708 typical common base scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 3 v, i c = 5 ma 50 0.781 176.95 1.7732 3.0425 0.004 85.472 1.006 1.6658 100 0.780 174.093 1.7625 5.9870 0.006 88.871 1.002 3.5604 200 0.776 168.012 1.7622 11.733 0.013 94.408 1.004 6.7723 400 0.759 156.688 1.7285 23.541 0.029 100.70 1.006 13.627 600 0.743 145.893 1.6911 35.161 0.047 100.93 1.015 20.799 800 0.725 135.660 1.6441 46.886 0.071 98.938 1.024 28.057 1000 0.709 126.241 1.5817 58.697 0.095 95.803 1.031 35.921 1500 0.674 103.465 1.4275 90.316 0.172 85.633 1.037 56.915 2000 0.620 81.3686 1.1968 123.89 0.249 73.589 0.957 77.953 typical common base scattering parameter (t a = 25 c) freq s11 s21 s12 s22 mhz mag ang mag ang mag ang mag ang v ce = 3 v, i c = 10 ma 50 0.867 176.898 1.8601 3.2938 0.004 88.195 1.006 1.7132 100 0.863 173.941 1.8432 6.3479 0.007 90.044 1.001 3.6916 200 0.851 167.942 1.8370 12.359 0.014 91.598 1.003 6.9503 400 0.821 157.527 1.7814 23.95 0.029 96.128 1.003 13.909 600 0.795 148.933 1.7303 34.993 0.045 97.955 1.011 21.082 800 0.782 139.487 1.6831 46.443 0.067 98.521 1.018 28.456 1000 0.773 131.501 1.6327 57.916 0.091 96.532 1.024 36.296 1500 0.765 110.253 1.4975 89.11 0.169 88.005 1.031 57.462 2000 0.730 87.937 1.2711 123.21 0.253 76.070 0.950 78.777
nsf2250wt1 http://onsemi.com 9 v ce = 2.5 v, i c = 2.5 ma figure 15. input reflection coefficient figure 16. reverse transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 2 ghz 0.05 ghz 0.1 0.15 0.2 0.25 0.05 ghz 2 ghz s11 s12 figure 17. output reflection coefficient figure 18. forward transmission coefficient 0 0 j10 j25 j50 j100 j100 j50 j25 j10 180 0 150 120 90 60 30 90 60 30 120 150 10 25 50 100 2 ghz 0.05 ghz 0.05 ghz 2 ghz s22 s21 0.1 0.15 0.2 0.25 0.05
nsf2250wt1 http://onsemi.com 10 p d = t j(max) t a r q ja p d = 150 c 25 c 0.625 c/w = 200 milliwatts ? the soldering temperature and time should not exceed 260 c for more than 10 seconds. ? when shifting from preheating to soldering, the maximum temperature gradient should be 5 c or less. ? after soldering has been completed, the device should be allowed to cool naturally for at least three minutes. gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. ? mechanical stress or shock should not be applied dur- ing cooling * soldering a device without preheating can cause exces- sive thermal shock and stress which can result in damage to the device. information for using the sc70/sot323 surface mount package minimum recommended footprint for surface mounted applications surface mount board layout is a critical portion of the total design. the footprint for the semiconductor packages must be the correct size to insure proper solder connection sc70/sot323 power dissipation the power dissipation of the sc70/sot323 is a func- tion of the pad size. this can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. power dissipation for a surface mount device is determined by t j(max) , the maximum rated junction tem- perature of the die, r q ja , the thermal resistance from the device junction to ambient; and the operating temperature, t a . using the values provided on the data sheet, p d can be calculated as follows. the values for the equation are found in the maximum ratings table on the data sheet. substituting these values into the equation for an ambient temperature t a of 25 c, one can calculate the power dissipation of the device which in this case is 200 milliwatts. the 0.625 c/w assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 200 milliwatts. another alternative would be to use a ceramic substrate or an aluminum core board such as thermal clad ? . using a board material such as thermal clad, a higher power dissipation of 300 milli- watts can be achieved using the same footprint. interface between the board and the package. with the correct pad geometry, the packages will self align when subjected to a solder reflow process. soldering precautions the melting temperature of solder is higher than the rated temperature of the device. when the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. ? always preheat the device. ? the delta temperature between the preheat and soldering should be 100 c or less.* ? when preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. when using infrared heating with the reflow soldering method, the difference should be a maximum of 10 c. mm inches 0.035 0.9 0.075 0.7 1.9 0.028 0.65 0.025 0.65 0.025
nsf2250wt1 http://onsemi.com 11 package dimensions sc70 (sot323) case 41904 issue l c n a l d g s b h j k 3 12 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. dim min max min max millimeters inches a 0.071 0.087 1.80 2.20 b 0.045 0.053 1.15 1.35 c 0.032 0.040 0.80 1.00 d 0.012 0.016 0.30 0.40 g 0.047 0.055 1.20 1.40 h 0.000 0.004 0.00 0.10 j 0.004 0.010 0.10 0.25 k 0.017 ref 0.425 ref l 0.026 bsc 0.650 bsc n 0.028 ref 0.700 ref s 0.079 0.095 2.00 2.40 0.05 (0.002) style 3: pin 1. base 2. emitter 3. collector
nsf2250wt1 http://onsemi.com 12 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. nsf2250wt1/d thermal clad is a registered trademark of the bergquist company. literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of NSF2250WT1-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X